
Contents

Welcome to T. This is an easy to learn, user friendly, high level, computer programming
language. T is more like natural English than most other computer languages and this makes a
T program both easy to write and easy to understand.

Help contains a tutorial on the T computer language, and operating instructions for the
interpreter.

Main menu commands
Getting started
Working with data
Some input and output
Looping and jumping
Using subprograms
Language reference
Source code

Getting started

This topic introduces you to the usage of the T interpreter. It shows you how to enter, debug,
and run a program.

writing a T program

Every T program is a sequence of declarations and statements that begins and ends within a
program module. The following is a complete program:

program
 put "Hello!"
end program
It is made up of key words, literals, special symbols, and standard subprograms. In the example
above, put is a key word, " is a special symbol, and Hello! is a literal string.

A T program is modular. The program module defines both the start and end of a program. All
executable statements are contained within this module or within subprogram modules.
Subprograms, procedures and functions, are used to create a program from small manageable
pieces. T allows you to define procedure modules and function modules as needed for your
programs.

The T programming language supports a variety of data types. You may declare named
variables and named constants; you may define your own data type using a type definition. T
has only two numerical data types; integers and floating point numbers. It has a boolean type, a
character type, and a string type. It supports an array type, a record type and a union type which
you the programmer define. Global variable declarations and data type definitions must be
located outside of the program and any subprogram modules. Declarations are limited to the
scope in which they are defined. This means that a variable named number declared as a
global is not the same as the variable number declared within a subprogram.

comments and white space

Comments, together with white space (spaces between symbols and blank lines) make a program
easier to read and understand. This is important if you want to show your program to someone
else or use it again yourself at some future time. T is a free form language. As long as the
words and symbols are in the correct order, a program will run correctly. It is up to you to make
a program easy to read and understand. Some programmers find that it is helpful to add
comments and to name data and subroutines in such a way that each step of the debugger is
easily understood.

comment symbol

The character % indicates that all following text to the end of the line is a comment and not
part of the program

first program

This is an example of a simple program which you can use to try out the T interpreter:

const x := 2
const y := 4
program
 var sum : int
 sum := x + y
 put x, " +", y, " =", sum
end program
Enter this program, and using the instructions which follow. The first step is to open a new file
using the File-New command.

source files

Enter the sample program into the editor. After you have finished use the File-Saveas command
to save your program. Type a name for your program; how about first.t? Note the .t;
this is the file name extension used by the editor to identify a program's source files. Press
<Enter> when you've finished. At the top of the edit window, the no_name#.t should
disappear and be replaced with the name you typed.

project file

Next you must create a project file. Using the editor, create a file containing the name of the file
just created. Save this file with a file name in the form projname.prt using the File-
Saveas command. The project file should contain a list of program files which makes up a
program. This feature allows you to create multiple source file programs.

running a T program

Load the project file with the Project-Load command; this will enable the commands which
allow you to run and debug your programs. Now use the Project-Run command or the
<F9> function key to run the program. The editor will start the interpreter in its run mode.
The interpreter parses all the files listed in the project file and runs the program. Text output is
directed to a projname.out file which you can edit and save.

debugging a T program

Load a project using the Project-Load command and use the Project-Step command or the
<F7> function key to start the interpreter in its debugging mode. If you entered correct code

you should see one of your files with a bar highlighting the first executable line.

If you entered incorrect code you will see a list of errors displayed in a dialog box. Using the
mouse to select error messages will show you where the errors are. Each line containing an
error message shows the file and location of the error using the following format:

 filename.ext [line:column] description

Let's assume that either you entered the program correctly or you corrected any errors and started
the interpreter again in the debugging mode. Press the <F7> function key. The highlight
will jump to the next line containing a statement. Keep doing this until the interpreter reaches
the end of the program. Each line containing an executable statement was highlighted.

The other debug command, Project-Step or function key <F8>, allows you to step over a
function or procedure you defined in your program rather than tracing into it. Use of this
command may save you some time in debugging a large program.

language features for debugging

Three features to make it easier for you to debug your programs.

The assert statement has the form:

 assert boolean expression

If the boolean expression is false during program execution the program is halted. This
program fragment would terminate a program because of invalid data:

 get x % from console
 assert x > 0.0 % if false, halt
 put sqrt(x) % do if true
The break statement has the form:

 break
It unconditionally interupts processing and displays the trace line at the corresponding line of the
source file. You may resume processing by using the Run, Trace, or Step command.

The watch procedure allows you to observe variables while debugging a program. It is written
as a statement in a program with the form:

 watch(expression)

When the interpreter is in the debug mode, the value of the expression is displayed on the screen.

File menu commands

New
Keyboard command: Alt+F N
Hot key: Ctrl+N
Opens a new document window with a default title and makes it the active window.

Open...
Keyboard command: Alt+F O
Hot key: Ctrl+O
Allows you to select and open an existing file. The just opened file will be made the active
window.

Save
Keyboard command: Alt+F S
Hot key: Ctrl+S
Saves the file in the currently active window to disk. The file remains open so you can continue
working on it.

Save As...
Keyboard command: Alt+F A
Allows you to name a new file or save an existing file under a new name or to a different
directory. The original file is not changed. The file remains open so you can continue working
on it.

Print...
Keyboard command: Alt+F P
Hot key: Ctrl+P
Allows you to print the file in the active window.

Exit
Keyboard command: Alt+F X
Closes open files and quits the T interpreter application. You can save open files before
quitting.

Main menu commands

The T interpreter functions within a multiple document editor. A set of menu commands allows
you to control the editor as well as the interpreter.

subtopics:

File menu commands
Edit menu commands
Search menu commands
Project menu commands
Window menu commands
Help menu commands

Looping and jumping

The T programming language provides several statements that control the sequence of program
execution. Each of these control statements must be used entirely within the program module or
a subprogram module.

exit statements

An exit statement has the form:

exit [when boolean expression]

and is allowed only within a loop statement or a for statement. The exit statement causes
program execution to jump to the first statement after the nearest enclosing loop or for statement.
If the optional key word when is present, the jump is conditional and occurs only if the
boolean expression is true.

continue statements

A continue statement has the form:

continue [when boolean expression]

and, as above, is allowed only within a loop statement or a for statement. The continue
statement causes program execution to jump to the first statement in the nearest enclosing loop
or for statement. If the optional key word when is present, the jump is conditional and occurs
only if the boolean expression is true.

loop statements

The loop control statement has the form:

loop
declarations and statements

end loop
Program execution jumps to the first statement in the loop body on reaching end loop. Note
that, by itself, a loop statement is infinite; that is, it will continue indefinitely unless stopped by
some other statement. An exit statement terminates the nearest enclosing loop. Declarations
made within a loop are visible only within the loop body. An example:

program
 var number : int := 0
 loop

 incr number
 exit when number > 4
 continue when number = 2
 put number
 end loop
end program
for statements

The for control statement is written as:

for [decreasing] name := begin...end do
declarations and statements

end for
The range following the ":=" defines the beginning and ending values of the count variable
name. The count limits begin and end must be integer expressions. The loop's statement list is
executed once for each valid value of the count variable which is incremented by one or, if
decreasing is included, decremented by one before repeating the statement list. As above,
an exit statement can be used to terminate the loop. Declarations made within the for statement
are not visible outside of the statement. An example:

program
 var number : int := 0
 var i : int
 for i := 1...5 do
 decr number
 continue when number = -3
 put number
 end for
end program
if statements

An if control statement has the form:

 if boolean expression then
 declarations and statements
{elsif boolean expression then

 declarations and statements}
[else
 declarations and statements]
 end if

The boolean expression for each branch is evaluated until one of them is true. The statements in
the branch are executed until a closing elsif, else, or end if is reached. If no boolean
expression is true then the statements following else, if present, are executed. The program
resumes at the first statement after end if. An example:

program
 prompt "Enter test score:"
 loop
 var mark : int
 get mark
 exit when mark < 0
 if mark > 100 then
 put "Invalid"
 elsif mark >= 93 then
 put 'A'
 elsif mark >= 85 then
 put 'B'
 elsif mark >= 78 then
 put 'C'
 elsif mark >= 70 then
 put 'D'
 else
 put 'F'
 end if
 end loop
end program
case statements

A case control statement has the form:

case expression of
 value constant{, constant} :
 declarations and statements
 {value constant{, constant} :
 declarations and statements}
 [value :

 declarations and statements]
end case

The expression and each constant must be of matching type of either integer, character, string, or
an enumerated type. Declarations made within a branch are not visible outside the branch. The
expression is evaluated and compared with each constant of each branch until one of them is
true. The statements in the branch are executed until another value or end case is
reached. If no match is found then the statements following an optional value without a
constant are executed. The program resumes at the first statement after end case. An
example:

program
 var word : string
 put "enter a word from:"
 put "the rain in spain"
 prompt "enter a word:"
 loop
 get word
 case word of
 value "the", "rain", "in":
 put "ok"
 value "spain":
 put "done"
 exit
 value:
 put "not ok"
 end case
 end loop
end program
goto statements

The goto statement causes an unconditional jump from one point in a list of statements to a
named location. Jumps must be entirely within a program or subprogram module. In order to
use a goto statement, a name of the location to jump to must be declared using the form:

label name : % no type!

The goto statement can then be coded as:

goto name % from here

 .
 .
 .
name : % to here

This statement can be used to simplify your code by enabling jumps out of deeply nested logic or
by creating jumps to a single point of return from a subprogram. The goto statement can also be
used to make your program difficult to understand.

union keyword
usage

union
 item{, item} : type specification
 {item{, item} : type specification}
end union
remarks

Keyword is used to declare a union of data items. To access
elements of a union, use the item selector "." between a variable
name and the item.

see also

Working with data

break keyword

usage

break

remarks

Interrupts program execution and displays the corresponding line
in the source file.

see also

Getting started
watch

decr keyword
usage

decr name

remarks

Used to decrease the value of name by 1; name must be the
identifier of a variable integer.

see also

incr
Working with data

Working with data

The T programming language supports several kinds of data; literal constants, named constants
and named variables. Constants and variables must be declared before they are used. This is
done with a declaration statement. You may use any of the standard data types:

 int
 real
 boolean
 char
 string
or a data type you define in your program using one of these declaration key words:

 enum
 array
 record
 union
literals

A literal integer is written as a sequence of digits. A + or - operator can optionally precede
the first digit:

 123
 -46

A literal real number, that is, one written into your source code, begins and ends with a digit and
must contain a decimal point. A + or - can precede the first digit. The following forms are
valid:

 -9.954
 7.43e-4

These forms of real numbers are invalid:

 .97
 9.

A literal string is a sequence of characters between a pair of quotation marks:

 "The rain in Spain falls mainly on the plain."

A literal character is a single character between a pair of apostrophes:

 't'

identifiers

Every constant and variable you declare must be identified with a name. The T computer
programming language is case sensitive, a variable named "sum" is not the same variable as one
named "Sum". The maximum length of a name is 64 characters. A name can be made from
letters, digits, and the underscore character "_" but must start with a letter.

variable declarations

The declaration of a variable uses the key word var and has the following form:

 var name{, name} : type specification [:= expression]

Each name in the list is declared with the same type specification and is optionally initialized to
the same expression value.

constant declarations

The declaration of a constant uses the key word const and has this form:

 const name : type specification := expression

The syntax of a constant declaration is similar to that of a variable declaration; however, only
one name at a time is declared. A constant must be initialized when it is declared.

type declarations

A type declaration creates a name for a data type which you may use elsewhere in a program to
declare a variable or a constant with name as the type specification. The declaration of a data
type takes this form:

 type name : type specification

in which type specification can be one of the standard types. For example this declares a data
type named index:

 type index : int
expressions

Expressions are used as arguments in many program statements; they are used in assignment
statements, decision statements, and as arguments in subprogram calls. An expression returns a
numerical value, a boolean value, an enumerated value, a character, or a string. They do not
return entire arrays, records, or unions. An expression can be one of:

a. name

b. literal constant
c. expression operator expression
d. operator expression
e. (expression)

Form (a) must represent a value from one of the standard data types or an enumeration. The
name may represent a constant, an initialized variable, or a function. Form (b) can represent
any of the standard data types. Forms (c), (d), and (e) allow evaluation of complex arithmetic
and boolean expressions.

assignments

Assignment statements have the form:

name := expression

The name on the left hand side of := must be for a variable of standard type or a standard
type item of a user defined data type. The expression must be compatible with name, i.e., both
sides of the symbol := must have the identical data type except when an integer is assigned to
a real number variable.

The assignment statement is used to assign a new value to a variable. An assignment statement
closely resembles an equation:

sum := x + y

In a computer program, this means that the value of the expression x + y is to be assigned to
the memory location identified by sum which is its name. The assignment operator is the
symbol :=. It causes the memory location identified to the left of it to be assigned the value of
the expression to the right.

An assignment statement is not an equality. Consider a statement used frequently in repetitive
computer operations:

x := x + 1

What happens to the value of x when this statement executes?

numerical data

Only integers and real numbers are available in the T language. A constant number is declared
as follows:

 const i : int := 0
 const pi : real := 3.14159

A variable number does not need to be initialized when declared; but can be:

 var s : real
 var i, j, k : int
 % both are initialized
 var a, b : real := 1.0
The following operators may be used in numerical expressions:

 + integer or real addition
 - integer or real subtraction
 * integer or real multiplication
 / real division (result is real)
 div integer quotient
 mod integer remainder
 ^ integer or real exponentiation

In numerical expressions, the order of operations is from left to right for all but exponentiation.
Exponentiation has the highest precedence; next is the group: * / mod div and last is the
group: + -. Operations within enclosing parentheses occur before operations outside.

For example, a numerical expression would be evaluated as follows:

 4 + 9 div 2 * (9 - 11 mod 3 ^ 2)
 4 + 9 div 2 * (9 - 11 mod 9)
 4 + 9 div 2 * (9 - 2)
 4 + 9 div 2 * 7
 4 + 4 * 7
 4 + 28
 32

A numerical expression reduces to either a real number or to an integer. An integer value may
be assigned to a real variable; however, a real value may not be assigned to a variable declared as
an integer. This is to prevent loss of information.

Integers may be increased or decreased by 1 with the increment and decrement operators.
They only operate on integer variables. For example:

 var i, j : int := 0
 incr i % increment i by one
 decr j % decrement j by one
boolean data

A Boolean variable is limited to the range of true or false. The keywords true and
false are boolean constants. The following declarations are valid:

 var flag : boolean
 var result, done : boolean := false
The following Boolean operators are available in the T interpreter:

 and logical and
 nand not and
 or or
 nor not or
 xor exclusive or
 not invert

The operator not is a unary operator and has higher precedence than the operators and
and nand which have higher precedence than or, nor, and xor.

Comparison operators accept integer, real, character, or string operands and return true if the
comparison is satisfied, otherwise they return false:

 = equal to
 ~= not equal to
 > greater than
 >= greater than or equal to
 < less than
 <= less than or equal to

A comparison of two data items is a boolean factor and may be used as an operand in a boolean
expression. A boolean value may be assigned only to a boolean variable. Boolean variables
are often used in logical statements which control program execution. The following shows a
boolean assignment:

 singular := det = 0.0

string data

Strings are a sequence of text characters. A string may be up to 255 characters long. The end
of a string is marked by a null byte. The interpreter appends this marker automatically in many
of its functions. If a program you write inserts individual characters into a string, you could
inadvertently overwrite the end character with unpredictable results.

String expressions may use the concatenation operator & to concatenate a sequence of strings
by joining the end string on the left of operator to the beginning of the string to the right.

A string expression may be assigned only to a string variable. The following program uses
string assignments:

const wmsg : string := "Welcome to T, "
var message : string
var name : string
program
 prompt "Hi, what's your name? "
 get name
 message := wmsg & name & "!"
 put message
end program
The functions intstr, realstr, erealstr, and frealstr convert numbers into
formatted strings and may be used in string expressions. Note that characters may not be
concatenated into strings.

character data

Characters are individual text characters. They can be declared as follows:

var input : char
const one : char := '1'
You can assign several non-text characters to strings and to character data by using a preceding
backslash character:

 \" embedded quote
 \' embedded apostrophe
 \\ embedded backslash
 \b, \B back space
 \f, \F form feed
 \n, \N new line
 \t, \T tab
 \0 null (end of string character)

A character may be assigned only to a character variable. For example, this program fragment:

 var msg : string
 msg[0] := 'H'
 msg[1] := 'i'
 msg[2] := '\0'

initializes the variable string msg. Note that the string is terminated by a null character. An
individual character in a string may be accessed using an indexed form of the string variable
name. The following statements are valid:

 % get first character
 input := name[0]

 % set fifth character
 msg[4] := 't'

The standard function ord accepts a character and returns an integer. Its inverse is the
function chr which converts an integer into a character.

enumerated data

An enumeration type specification is declared using the key word enum with the syntax:

 type name : enum[item{, item}]

The items are valued sequentially and increasing. Example:

 type color : enum[red, yellow, green]
 var light : color := color.green
Note that enumerated items are identified using the dot operator.

 name.item

arrays of data

An array type specification is declared using the key words array and of with the
syntax:

 array[index{, index}] of type specification

Where each index must be an integer expression. Array indices are zero based. Example, for:

 var A : array[2, 2] of real
valid identifiers for A are:

 A[0, 0] A[0, 1]
 A[1, 0] A[1, 1]

records of data

A record type specification is declared using the key words record and end with the
syntax:

 record
 item{, item} : type specification
 {item{, item}}: type specification
 end record
A record item is identified using the dot operator:

 name.item

where name is the identifier of a constant or a variable. Each item has a distinct memory
location. Example:

var pt : record
 x, y, z : real
 end record
r := sqrt(pt.x^2 + pt.y^2 + pt.z^2)

unions of data

A union type specification is declared using the key words union and end with the
syntax:

union
 item{, item} : type specification
 {item{, item}}: type specification
end union
Unlike a record declaration, the items in a union occupy the same memory location. Your
program must keep track of the current type of data stored in a union. Unpredictable results can
occur if you access data in a union incorrectly. Like a record, a union item is also identified
using the dot operator:

 name.item

precedence of operators

The order of precedence determines which operations occur first in an expression; the highest is
first, the lowest last. The order of precedence for all operators from highest to lowest is:

^
+ - (as unary operators)
* / div mod

+ - &
= ~= < <= > >=
not
and nand
or nor xor

prompt keyword
usage

prompt string expression

remarks

Keyword is used to set the prompt string in the get dialog box
which is used when entering data from the console.

example

program
 var i : int
 prompt "enter i: "
 get i
 put "i = ", i, ", i^2 = ", i * i
end program
see also

get
Some input and output

Source code

The T Interpreter was developed using the C programming language and uses the Windows 3.1
Application Programming Interface. If you purchase the source code from the copyright owner,
the author below, you will have a right to use, or modify the source files for the T interpreter in
any way you find useful, provided that you agree that the copyright owner, the author, has no
warranty, obligations or liability for any of the source files for the T interpreter.

To order the source code please send $150 US to the author:

 Stephen R. Schmitt
 962 Depot Road
 Boxborough
 MA 01719

specify either 3.5 inch or 5.25 inch floppy diskette. These will be forwarded to you within
60 days. The disks will be replaced for free if defective.

Using subprograms

It is almost always necessary to use subprogram modules so that your programs are easy to
understand and maintain. There are two distinct types of subprogram modules. A procedure is
a statement by itself. A function returns a value for use in expression evaluation.

subprogram calls

A call to a subprogram has the form:

name[(argument{, argument})]

Program execution jumps to the subprogram declaration. The call passes each argument to the
subprogram. Upon completion of the statement list in a subprogram's body, program execution
returns to the point immediately after the call.

An example:

 x := square(7)

subprogram arguments

The arguments used in a subprogram call must be compatible with the parameters defined in a
subprogram declaration. Arguments are passed to a subprogram either by value or by reference.
Arguments passed by value cannot be changed by the subprogram. This means that a variable
used as an argument will have the same value before and after the subprogram call it was used in.
When an argument is passed by reference, the address of the argument is given to the
subprogram. In this case, a variable used as an argument may have a different value before and
after the subprogram call.

All standard data types can be passed by value. However, data structures, arrays, records, and
unions, cannot be passed by value to a subprogram. For example, if you need to perform an
operation on an array, you can pass the address of the entire array to a subprogram by reference.

A parameter list is a list of variable declarations used in the subprogram. It has this form:

[var] name{, name} : type specification

The key word var is used in a subprogram header to declare that each name in a parameter list
is passed by reference. Its omission means that each name in a parameter list is passed by
value.

return statements

Procedures may optionally contain a return statement of the form:

return
Functions, however, must contain at least one return statement having the form:

return expression

The expression's type must be compatible with the function's return type. The action of a return
statement is always immediate. A subprogram may contain more than one return statement.

procedure declarations

The declaration of a procedure takes the following form:

procedure name[(parameter{, parameter})]
 declarations and statements
end procedure
Declarations of variables or constants within the procedure body are only visible within the
procedure.

A procedure is a program statement. Program execution will resume at the next statement after
a procedure call. Program execution returns from a procedure upon reaching the end of the
procedure's statement list or by the action of a return statement anywhere in the body of the
procedure.

An example of a procedure declaration:

procedure put_square(value : real)
 put value*value
end procedure
function declarations

The declaration of a function is similar to that of a procedure:

function name[(parameter{, parameter})] : type specification
declarations and statements

end function
The differences are that a return type must be specified after the list of parameters as shown
above and that a function must return a value using a return statement.

Declarations of variables or constants within the function body are only visible within the
function.

Functions are used in expressions. Program execution returns to the point in the expression
after a function call. Program execution returns from a function upon reaching a return

statement anywhere in the body of the function.

An example of a function declaration:

function square(value : real) : real
 return value^2
end function
The T language includes the following standard functions and procedures to help you write
useful programs:

mathematical functions

arccos arc cosine
arcsin arc sine
arctan arc tangent
arctanxy arc tangent of Cartesian coordinates
ceil real to integer above
cos cosine
cosh hyperbolic cosine
exp power of natural logarithm base e
floor real to integer below
getexp exponent base 10 of argument
ln natural (base e) logarithm
log10 base 10 logarithm
rand real random number in range 0.0 to 1.0
randint integer random number in range of arguments
randomize changes seed of random number generator
randseed set random seed
round real to nearest integer
setexp set exponent base 10 to a new value
sign integer sign (+/-1) of real
sin sine
sinh hyperbolic sine
sqrt square root
tan tangent
tanh hyperbolic tangent

string and character functions

Functions in this group perform operations on strings and characters.

chr integer to character
erealstr real to string, exponent format
frealstr real to string, floating point format

index location of sub string
intstr integer to string
length length of string
ord character to integer
realstr real to string, default formats
repeat repeated sub strings
strint string to integer
strreal string to real number

file system access

These functions provide access to hard and floppy disk files.

close closes an open disk file
eof indicates when the end of a file is reached
open opens a disk file

Language reference

This topic contains descriptions of key words, special symbols, standard functions, and standard
procedures used in the T programming language.

conventions

Bracketed [item] items are optional. Items in braces {item} are optional and may be repeated.
Italicized items are elements of code determined by the programmer. A bar | means that
either the word on the right or the word on the left is applicable.

tables

special symbols
limits

definitions

and keyword
arccos standard function
arcsin standard function
arctan standard function
arctanxy standard function
array keyword
assert keyword
boolean keyword
break keyword
case keyword
ceil standard function
char keyword
chr standard function
close standard function
const keyword
continue keyword
cos standard function
cosh standard function
decr keyword
decreasing keyword
div keyword
do keyword
else keyword
elsif keyword
end keyword
enum keyword
eof standard function
erealstr standard function
exit keyword

exp standard function
false keyword
floor standard function
for keyword
frealstr standard function
function keyword
get keyword
getexp standard function
goto keyword
if keyword
incr keyword
index standard function
int keyword
intstr standard function
label keyword
length standard function
ln standard function
log10 standard function
loop keyword
mod keyword
nand keyword
nor keyword
not keyword
of keyword
open standard function
or keyword
ord standard function
procedure keyword
program keyword
prompt keyword
put keyword
rand standard function
randint standard function
randomize standard procedure
randseed standard procedure
real keyword
realstr standard function
record keyword
repeat standard function
return keyword
round standard function
setexp standard function
sign standard function
sin standard function
sinh standard function
sqrt standard function
string keyword

strint standard function
strreal standard function
tan standard function
tanh standard function
then keyword
true keyword
type keyword
union keyword
value keyword
var keyword
watch standard procedure
when keyword
xor keyword

incr keyword
usage

incr name

remarks

Used to increase the value of name by 1; name must be the
identifier of a variable integer.

see also

decr
Working with data

Some input and output

Input and output is provided by means of put and get statements to the output window and to
disk files.

put statements

The complete definition of the put statement is:

 put [:stream,] put item{, put item}[...]

It is used for output of text data to files or the video display of your console. The value of
stream must match an integer value obtained with the standard function open. If stream is
omitted, the output is sent to the console for video display. A put item has the form:

 expression [:width[:fraction width[:exponent width]]]

The expression can be of any standard type except boolean. The value of width is the total
number of characters in the put item. Strings are left justified; numbers are right justified. The
fraction width and exponent width options are for writing a number in a real number format. If
a specified format is too small, the actual format width is increased to accommodate the item.

The optional ellipses "..." symbol inhibits adding a new line after the last put item. Some
examples:

 put "hi":8
 put 0.001:12:4:2
 put 99:4
 const pi : real := 3.1415926535
 put pi
 put pi:12
 put pi:16:8:2
prompt statements

The prompt statement may be used to set a global prompt message. Once set the message is
displayed each time a get statement is used for console input. It has the form:

 prompt string expression

get statements

The complete definition of a get statement is:

 get [:stream,] get item{, get item}

It is used for input of text data from files or the console. The value of stream must match an
integer value obtained with the standard function open. If stream is omitted, the input
obtained by keyboard entry. A get item is one of:

a. name
b. name : *
c. name : width

Form (a) is used for token input; the root type of the get item's identifier can be integer, real, or
string. This form skips white space until an initial character indicates the start of a token.
Form (b) is used for line input and reads up to an end of line symbol. Form (c) reads width
characters. The identifiers in forms (b) and (c) can only be string type. Some examples:

 get your_name
 get characters : 8
file access functions

The standard functions open, close, and eof provide access to files on disk. Files
may be opened to read from or to write to. The following program fragment shows how these
standard functions may be used in a program:

var file : int
var filename : string := "a_file.txt"
file := open(filename, "r")
if file = 0 then
 put "file not found: ", filename
else
 loop
 exit when eof(file)
 get :file, buffer : *
 put buffer
 buffer := ""
 end loop
 if close(file) = 0 then
 put "file close error"
 end if
end if

arccos standard function

usage

arccos(expression : real) : real
remarks

Function returns the real arc cosine of expression in units of
radians. The value of expression must be in the range -1.0 to +1.0
or a run-time error will occur.

example

% return arc secant
function arcsec(x : real) : real
 var r : real
 if x >= 1.0 then
 r := arccos(1 / x)
 elsif x <= -1.0 then
 r := -arccos(1 / x)
 else
 r := 0.0
 end if
 return r
end function
see also

arcsin
arctan
arctanxy
Using subprograms

arcsin standard function

usage

arcsin(expression : real) : real
remarks

Function returns the real arc sine of expression in units of
radians. The value of expression must be in the range -1.0 to +1.0
or a run-time error will occur.

example

const Pi : real := 2 * arcsin(1)
% return arc cosecant
function arccsc(x : real) : real
 var r : real
 if x >= 1.0 then
 r := arcsin(1 / x)
 elsif x <= -1.0 then
 r := -Pi - arcsin(1 / x)
 else
 r := 0.0
 end if
 return r
end function
see also

arccos
arctan
arctanxy
Using subprograms

Window menu commands

Window management commands for the multiple document editor.

Cascade
Keyboard command: Alt+W C
Hot key: Shift+F5
Arranges the open source files into a cascade.

Tile horizontal
Keyboard command: Alt+W H
Hot key: Shift+F4
Arranges the open source files into horizontal tiles if space permits.

Tile vertical
Keyboard command: Alt+W T
Arranges the open source files into vertical tiles if space permits.

Arrange icons
Keyboard command: Alt+W I
Arranges the icons of open source files into regularly spaced rows.

Switch
Keyboard command: Alt+W S
Hot key: Ctrl+F6
Switches focus from one open source file to another open source file.

Close all
Keyboard command: Alt+W A
Closes all of the open source files.

and keyword
usage

boolean expression and boolean expression

remarks

Operator returns a boolean value:

x y x and y
false false false
false true false
true false false
true true true
see also

Working with data

arctan standard function

usage

arctan(expression : real) : real
remarks

Function returns the real arc tangent of expression in units of
radians in the range of -pi/2 to pi/2.

example

const Pi : real := 2 * arcsin(1)
% calculate hyperbolic <-> circular parameter
function gudermannian(x : real) : real
 var r : real
 r := 2 * arctan(exp(x)) - Pi / 2

 return r
end function
see also

arctanxy
arcsin
arccos
Using subprograms

arctanxy standard function

usage

arctanxy(x : real, y : real) : real
remarks

Function returns the real arc tangent of y/x in units of radians
in the range of -pi to pi. If both x and y are 0.0 a run-time
error will occur.

example

const Pi : real := 2 * arcsin(1)
% return heading in degrees
function heading(e, n : real) : real
 var hdg : real
 hdg := 90 - 180 * arctanxy(e, n) / Pi

 if hdg < 0.0 then
 hdg := hdg + 360
 end if
 return hdg
end function
see also

arctan
arcsin
arccos
Using subprograms

array keyword
usage

array[size{, size }] of type specification

remarks

Keyword is used for specifying a data type as an array of type
specification. Array indices, size, must be constant integer
expressions.

see also

limits
Working with data

assert keyword
usage

assert boolean expression

remarks

Keyword is used to conditionally continue execution of a program.
If boolean expression is false the program halts.

see also

Getting started

boolean keyword
usage

var name : boolean
remarks

Standard data type specifier. Boolean data can have a value of
either true or false.
see also

Working with data

case keyword
usage

case expression of
 value constant{, constant} :
 declarations and statements
 {value constant{, constant} :
 declarations and statements}
 [value :
 declarations and statements]
end case
remarks

The expression and each constant must be of matching types of int,
string, char, or enum. One value not having a constant may be
placed at the end of the sequence of case values as a default
branch.

see also

Looping and jumping

ceil standard function

usage

ceil(expression : real) : int
remarks

Function returns the smallest integer greater than or equal to
expression.

example

% find absolute ceiling of number
function abs_ceil(x : real) : int
 var r : int
 if x >= 0.0 then
 r := ceil(x)
 else
 r := floor(x)
 end if
 return r
end function
see also

floor
round
sign
Using subprograms

char keyword
usage

const name : char := 'literal character'
var name : char
remarks

Standard data type specifier for characters.

see also

Working with data

chr standard function

usage

chr(expression : int) : char
remarks

Function returns a character corresponding to the integer value
of expression.

example

procedure list_characters
 var i, j, n : int
 for i := 2...7 do
 for j := 0...15 do
 n := i * 16 + j
 put n, " - ", chr(n)
 end for
 end for
end procedure
see also

ord
Using subprograms

close standard function

usage

close(stream : int) : int
remarks

Function closes the file associated with stream. Returns stream on
success or else 0.

example

% copy text files
function copy(d : string,
 s : string) : boolean
 var df, sf : int
 var line : string
 sf := open(s, "r")
 df := open(d, "w")

 if sf = 0 or
 df = 0 then
 return false
 end if
 loop
 exit when eof(sf)
 get : sf, line : *
 put : df, line
 end loop
 if close(sf) = 0 or
 close(df) = 0 then
 put "file close error"
 return false
 else
 return true
 end if
end function
see also

eof

open
Some input and output
Using subprograms

const keyword
usage

const name : type specification := constant expression

remarks

Keyword is used to declare a constant. The constant expression may
not include any names of variables.

see also

Working with data

continue keyword
usage

continue [when boolean expression]

remarks

Used to jump to the start of the nearest enclosing for or loop
statement. Jump is immediate unless the optional when condition
is included.

see also

Looping and jumping

cos standard function

usage

cos(expression : real) : real
remarks

Function returns the cosine of expression. The value of expression is
assumed to be in units of radians.

example

% return secant
function sec(x : real) : real
 return 1 / cos(x)
end function
see also

sin
tan
Using subprograms

cosh standard function

usage

cosh(expression : real) : real
remarks

Function returns the hyperbolic cosine of expression. The value of
expression is assumed to be in units of radians.

example

% return hyperbolic secant
function sech(x : real) : real
 return 1 / cosh(x)
end function
see also

sinh
tanh
Using subprograms

decreasing keyword
usage

for decreasing name := begin...end do
remarks

The keyword indicates that the for loop counter decrements by one
on each repeat of the loop.

see also

for
Looping and jumping

div keyword
usage

integer expression div integer expression

remarks

Operator returns the quotient for integer division. The result
type is integer.

see also

mod
Working with data

do keyword
usage

for name := begin...end do
see also

for
Looping and jumping

elsif keyword
usage

elsif boolean expression then
 declarations and statements

see also

if
Looping and jumping

else keyword
usage

else
 declarations and statements
end if
see also

if
Looping and jumping

end keyword
usage

end loop
end for
end if
end case
end function
end program
end procedure
end record
end union
remarks

Used to mark the end of logic statements, data structure
definitions, and subprograms.

see also

Getting started
Working with data
Looping and jumping
Using subprograms

eof standard function

usage

eof(stream : int) : boolean
remarks

Function returns true if the end of the file corresponding to
stream has been reached. The value of stream is normally obtained
using the "open" function.

example

% copy text files
function copy(d : string,
 s : string) : boolean
 var df, sf : int
 var line : string
 sf := open(s, "r")
 df := open(d, "w")

 if sf = 0 or
 df = 0 then
 return false
 end if
 loop
 exit when eof(sf)
 get : sf, line : *
 put : df, line
 end loop
 if close(sf) = 0 or
 close(df) = 0 then
 put "file close error"
 return false
 else
 return true
 end if
end function
see also

close
open
Some input and output
Using subprograms

enum keyword
usage

type name : enum[item {, item }]

remarks

Used to define an enumerated data type. The value of each item
increases to the right. Values are accessed using the form:

 name.item

see also

Working with data

erealstr standard function

usage

erealstr(expression : real,
 format width : int,
 fraction width : int,
 exponent width : int) : string
remarks

Function returns a string of the form:

 {blank}[-]digit.{digit} e sign digit{digit}

corresponding to expression. Widths are increased automatically if
necessary.

example

const Pi : real := 2 * arcsin(1)
procedure put_area(r : real)
 var a : real
 var line : string
 a := Pi * r^2
 line := "area = " &
 erealstr(a, 24, 12, 3)
 put line
end procedure
see also

frealstr
realstr
intstr
Using subprograms

exit keyword
usage

exit [when boolean expression]

remarks

Used to exit from the nearest enclosing for or loop statement.
Exit is immediate unless the optional when condition is included.
see also

Looping and jumping

exp standard function

usage

exp(expression : real) : real
remarks

Function returns the natural logarithm base e raised to the power
of expression.

example

% return probability of Poisson pdf
function poisson(x : int, m : real) : real
 var f : int := 1
 var r : real
 assert x >= 0
 assert m > 0
 r := m^x * exp(-m)

 loop
 exit when x = 0
 f := f * x
 decr x
 end loop
 r := r / f

 return r
end function
see also

ln
Using subprograms

false keyword
usage

name := false
remarks

Boolean constant; opposite of true.
see also

Working with data

floor standard function

usage

floor(expression : real) : int
remarks

Function returns the largest integer less than or equal to
expression.

example

% find absolute floor of number
function abs_floor(x : real) : int
 var r : int
 if x >= 0.0 then
 r := floor(x)
 else
 r := ceil(x)
 end if
 return r
end function
see also

ceil
round
sign
Using subprograms

for keyword
usage

for [decreasing] name := begin...end do
 declarations and statements
end for
remarks

The for statement repeats the list of declarations and statements for
each value in the range begin...end. The identifier name must be
declared as an integer outside the loop. The value of name is
incremented, or decremented if the optional keyword decreasing is
used, before repeating the loop. The continue and exit
statements can be used for control within the loop. Declarations
made within the loop are not visible outside the loop.

see also

Looping and jumping

frealstr standard function

usage

frealstr(expression : real,
 format width : int,
 fraction width : int) : string
remarks

Function returns a string of the form:

 {blank}[-]digit{digit}.{digit}

corresponding to expression. Blanks are added as needed to right
justify the string. Widths are increased automatically if
necessary.

example

const Pi : real := 2 * arcsin(1)
procedure put_circumference(r : real)
 var c : real
 var line : string
 c := 2 * Pi * r
 line := "circumference = " &
 frealstr(c, 24, 12)
 put line
end procedure
see also

erealstr
realstr
intstr
Using subprograms

function keyword
usage

function name[(param{, param})] : type specification
 declarations and statements
end function
in which param is:

 [var] name{, name} : type specification

remarks

A function must return a value using a return statement.
Declarations within the function definition are only visible
within the function. The use of var in a parameter list means
that the parameter is to be passed to the function by reference
rather than by value.

see also

Using subprograms

get keyword
usage

get [:stream,] get item{, get item}

in which a get item is one of:

a. name
b. name : *
c. name : width

remarks

Each get item read sequentially from a file identified by stream. If
stream is omitted, input is from your console's keyboard.

The name of get item must correspond to a declared variable. Form
(a) can be an integer, real number, or a string. Form (b) reads
input until an end of line character is found, name must be of a
string. Form (c) reads width characters and name must also be of
a string.

see also

put
open
close
Some input and output

getexp standard function

usage

getexp(expression : real) : int
remarks

Function returns the exponent, base 10, of expression. If expression
equals 0.0, zero is returned.

example

type bignum : record
 m : real % mantissa
 x : int % exponent
 end record
% print a big number
procedure put_bignum(var s : bignum)
 put s.m, " x 10^", s.x
end procedure
% divide two big numbers
% dest <- dest / srce
procedure divide(var d, s : bignum)
 var dx : int
 d.m := d.m / s.m
 d.x := d.x - s.x

 dx := getexp(d.m)

 if dx ~= 0 then
 d.x := d.x + dx
 d.m := setexp(d.m, 0)

 end if
end procedure
see also

setexp
Using subprograms

goto keyword
usage

goto label name

remarks

This keyword causes an immediate jump to the location of label
name. Program execution may not jump from one subprogram to
another.

see also

label
Looping and jumping

if keyword
usage

 if boolean expression then
 declarations and statements
{elsif boolean expression then
 declarations and statements}
[else
 declarations and statements]
 end if
remarks

The declarations and statements are executed in the first branch in which
the boolean expression is true. Optional elsif branches must be
placed ahead of the single optional else branch. Declarations
within each branch are not visible outside the branch.

see also

Looping and jumping

index standard function

usage

index(string, pattern : string) : int
remarks

Function returns the value of the location of the first
occurrence of pattern in string. If no match is found, a negative
number is returned.

example

program
 var s : string := "The rain in Spain"
 var i : int
 i := index(s, "Spain")
 put i
end program
see also

length
Using subprograms

int keyword
usage

var name : int
const name : int := integer expression

remarks

Standard data type specifier for integer data.

see also

limits
Working with data

intstr standard function

usage

intstr(expression, format width : int) : string
remarks

Function returns a string of form:

 {blank}[-]digit{digit}

corresponding to expression. Blanks are added as needed to right
justify the string. The actual width is increased automatically
if format width is too small.

example

procedure fibonacci_numbers
 var s : string
 var f0, f1, f2 : int
 f0 := 1
 f1 := 1
 s := intstr(f0, 4) & intstr(f1, 4)

 loop
 exit when f2 > 100
 f2 := f1 + f0
 s := s & intstr(f2, 4)
 f0 := f1
 f1 := f2

 end loop
 put s
end procedure
see also

erealstr
frealstr
realstr
Using subprograms

label keyword
usage

label name :

remarks

This keyword is used to declare a marker for a goto statement.
see also

goto
Looping and jumping

length standard function

usage

length(expression : string) : int
remarks

Function returns the actual number of characters in expression.

example

program
 var s : string := "The rain in Spain"
 var i : int
 i := length(s)
 put i
end program
see also

index
Using subprograms

ln standard function

usage

ln(expression : real) : real
remarks

Function returns the natural logarithm of expression which must
have a value greater than zero or a run-time error will occur.

example

% inverse hyperbolic sine
function inv_sinh(x : real) : real
 var r : real
 r := ln(x + sqrt(x*x + 1))

 return r
end function
see also

exp
log10
Using subprograms

log10 standard function

usage

log10(expression : real) : real
remarks

Function returns the base 10 logarithm of expression which must
have a value greater than zero or a run-time error will occur.

example

% logarithm with error handler
function log_base_10(x : real) : real
 var r : real := 0.0
 if x > 0 then
 r := log10(x)
 end if
 return r
end function
see also

ln
Using subprograms

loop keyword
usage

loop
 declarations and statements
end loop
remarks

This keyword marks the beginning and end of an infinite loop.
Declarations within the loop are not visible outside the loop.
Statements in the loop are executed until terminated by an exit
statement. A continue statement may also be used for control
within the loop.

see also

Looping and jumping

Project menu commands

These commands are for operating the T interpreter.

Run
Keyboard command: Alt+P R
Hot key: F9
Run the current project. If this command is selected after stepping or tracing, your program will
run to completion.

Step over
Keyboard command: Alt+P S
Hot key: F8
Allows you to step through a program without entering subprograms. Closed source files will
be opened automatically as needed.

Trace into
Keyboard command: Alt+P T
Hot key: F7
Allows you to step through a program and jump into subprograms. Closed source files will be
opened automatically as needed.

Halt
Keyboard command: Alt+P H
Allows you to halt a program which you are stepping or tracing through.

Load project...
Keyboard command: Alt+P L
Loads the file containing the list of source files which make up your program. This will enable
run, step, or trace operations.

Close project
Keyboard command: Alt+P C
This command will remove the current project and disable run, step, and trace operations.

mod keyword
usage

integer expression mod integer expression

remarks

Operator returns the remainder for integer division. The result
is an integer.

see also

div
Working with data

nand keyword
usage

boolean expression nand boolean expression

remarks

Operator returns a boolean value:

x y x nand y
false false true
false true true
true false true
true true false
see also

Working with data

nor keyword
usage

boolean expression nor boolean expression

remarks

Operator returns a boolean value:

x y x nor y
false false true
false true false
true false false
true true false
see also

Working with data

not keyword
usage

not boolean expression

remarks

Operator returns a boolean value:

x not x
false true
true false
see also

Working with data

of keyword
usage

array[size{, size}] of type specification
case expression of
see also

array
case
Working with data
Looping and jumping

open standard function

usage

open(filename, mode : string) : int
remarks

Function opens a file for reading or writing and returns the
file's stream number. The mode is either of:

"r" for sequentially reading from, or
"w" for sequentially writing to.

If the file cannot be opened, zero is returned.

example

% copy text files
function copy(d : string,
 s : string) : boolean
 var df, sf : int
 var line : string
 sf := open(s, "r")
 df := open(d, "w")

 if sf = 0 or
 df = 0 then
 return false
 end if
 loop
 exit when eof(sf)
 get : sf, line : *
 put : df, line
 end loop
 if close(sf) = 0 or
 close(df) = 0 then
 put "file close error"
 return false
 else
 return true
 end if

end function
see also

close
eof
Some input and output
Using subprograms

or keyword
usage

boolean expression or boolean expression

remarks

Operator returns a boolean value:

x y x or y
false false false
false true true
true false true
true true true
see also

Working with data

ord standard function

usage

ord(expression : char) : int
remarks

Function accepts a character and returns its corresponding
integer value.

example

% compare two strings
function strcmp(s1, s2 : string) : int
 var i : int := 0
 var d : int
 loop
 d := ord(s1[i]) - ord(s2[i])
 exit when d ~= 0
 exit when s1[i] = '\0'
 exit when s2[i] = '\0'
 exit when i >= 255
 incr i
 end loop
 return d
end function
see also

chr
Using subprograms

procedure keyword
usage

procedure name[(param{, param})]
 declarations and statements
end procedure
in which param is:

[var] name{, name} : type specification

remarks

A procedure may return after reaching the end of the list of its
statements or when a return statement is reached. Declarations
within the procedure definition are only visible within it. The
use of var in a parameter list means that the parameter is to be
passed by reference.

see also

Using subprograms

program keyword
usage

program
 declarations and statements
end program
remarks

The program statement defines the start and end of every program.
Statements can call functions or procedures which are
subprograms. Declarations are only visible within the program
statement.

see also

Getting started

limits

maximum value of an integer +2147483647
minimum value of an integer -2147483648

maximum magnitude of a real number 1.797693e+308
minimum magnitude of a real number 2.225074e-308

maximum value of base 10 exponent +308
minimum value of base 10 exponent -307

maximum string length in bytes 255

maximum array size in bytes 32767

see also

Working with data

put keyword
usage

put [:stream,] put item{, put item}[...]

in which a put item is:

expression[:format width[:fraction width[:exponent width]]]

remarks

Each put item is written sequentially to a file identified by stream.
If stream is omitted, output is to the text output window on your
console's video display. A new line is started at the end of the
list of put items unless the ellipsis symbol "..." is appended.

A global file pointer is set when stream is included in the put
statement. If a put item uses a function call, the function should
not use a different stream than the put statement.
see also

get
close
open
Some input and output

Search menu commands

Find...
Keyboard command: Alt+S F
Searches for character strings in the active file. Search is case sensitive. You can search
forward or backward from the insertion point.

Replace...
Keyboard command: Alt+S R
Searches for character strings in the active file and replaces each occurrence with a new string.
Search is case sensitive. You can search forward or backward from the insertion point.

Next find
Keyboard command: Alt+S N
Hot key: F3
Repeats the last search or search and replace operation without opening the Find dialog box.

rand standard function

usage

rand : real
remarks

Function returns the next value of a sequence of pseudo random
real numbers approximating a uniform distribution within the
range 0.0 to 1.0.

example

% generate a normal random variable
function normal(mu, sig : real) : real
 var r, x : real
 r := sig * sqrt(-2 * ln(rand))
 x := r * sin(2 * 3.14159 * rand) + mu

 return x
end function
see also

randint
randomize
randseed
Using subprograms

randint standard function

usage

randint(low, high : int) : int
remarks

Function returns the next value of a sequence of pseudo random
integers approximating a uniform distribution in the range low to
high.

example

type pick : record
 b1, b2, b3, b4 : int
 end record
procedure lotto(var d : pick)
 d.b1 := randint(1, 16)

 loop
 d.b2 := randint(1, 16)
 exit when d.b1 ~= d.b2
 end loop
 loop
 d.b3 := randint(1, 16)
 exit when d.b1 ~= d.b3 and
 d.b2 ~= d.b3
 end loop
 loop
 d.b4 := randint(1, 16)
 exit when d.b1 ~= d.b4 and
 d.b2 ~= d.b4 and
 d.b3 ~= d.b4
 end loop
end procedure
see also

rand
randomize
randseed

Using subprograms

randomize standard procedure

usage

randomize

remarks

Procedure sets the pseudo random seed used by functions "rand"
and "randint" to a machine generated random value.

example

procedure start_rng(n : int)
 if n ~= 0 then
 randseed(n)
 else
 randomize
 end if
end procedure
see also

randseed
Using subprograms

randseed standard procedure

usage

randseed(new seed : int)
remarks

Procedure resets the pseudo random seed used by functions "rand"
and "randint" to new seed.

example

procedure start_rng(n : int)
 if n ~= 0 then
 randseed(n)
 else
 randomize
 end if
end procedure
see also

randomize
Using subprograms

real keyword
usage

var name : real
const name : real := expression

remarks

Standard data type specifier for real numbers.

see also

limits
Working with data

realstr standard function

usage

realstr(expression : real,
 format width : int) : string
remarks

Function returns a string of the form:

 {blank}[-]digit{digit}.{digit}

or of the form:

 {blank}[-]digit.{digit} e sign digit{digit}

depending on the magnitude of expression. Blanks are added as
needed to right justify the string. If format width is too small,
the width is increased automatically.

example

const Pi : real := 2 * arcsin(1)
procedure put_volume(r : real)
 var v : real
 var line : string
 v := (4 / 3) * Pi * r^3
 line := "volume = " &
 realstr(v, 24)
 put line
end procedure
see also

erealstr
frealstr
intstr
Using subprograms

record keyword
usage

record
 item{, item} : type specification
 {item{, item} : type specification}
end record
remarks

Keyword is used to declare a record data type. To access
elements of a record type, use the item selector "." between a
variable name and the item.

see also

Working with data

repeat standard function

usage

repeat(string : string,
 expression : int) : string
remarks

Function returns expression copies of string joined together into a
single string.

example

procedure plot_sine(w : real)
 var r, t : int
 var s : string
 for t := 0...40 do
 r := round(24 * sin(w * t))
 r := r + 24
 s := repeat(" ", r) & "*"
 put s
 end for
end procedure
see also

Using subprograms

return keyword
usage

return [expression]

remarks

Keyword causes a return from a function or procedure. A function
must return a value. The type of expression must be compatible
with a function's return type.

see also

Using subprograms

round standard function

usage

round(expression : real) : int
remarks

Function returns the integer nearest to expression.

example

% convert a real number into dollar-cents
function real_to_money(x : real) : real
 var m : real
 m := 0.01 * round(100 * x)

 return m

end function
see also

ceil
floor
sign
Using subprograms

setexp standard function

usage

setexp(expression : real, exp : int) : real
remarks

Function returns the value of expression with its exponent, base
10, changed to exp. If expression equals 0.0, zero is returned.

example

type bignum : record
 m : real % mantissa
 x : int % exponent
 end record
% convert a real number into a big number
procedure convert(var d : bignum, s : real)
 d.x := getexp(s)
 d.m := setexp(s, 0)

end procedure
% multiply two big numbers
% dest <- dest * srce
procedure multiply(var d, s : bignum)
 var dx : int
 d.m := d.m * s.m
 d.x := d.x + s.x

 dx := getexp(d.m)

 if dx ~= 0 then
 d.x := d.x + dx
 d.m := setexp(d.m, 0)

 end if
end procedure
getexp

limits
Using subprograms

Help menu commands

Commands for on-line help system.

Help index
Keyboard command: Alt+H H
Opens the T interpreter's on-line help system at the table of contents.

Lookup
Keyboard command: Alt+H L
Hot key: F1
Opens the T interpreter's on-line help system to a help topic about the word at the cursor location
in the currently active window. If no related topic exists, the table of contents is displayed.

Using help
Keyboard command: Alt+H U
Opens the Windows help on help facility.

About...
Keyboard command: Alt+H A
Opens a dialog box which provides version and copyright information on the T interpreter.

sign standard function

usage

sign(expression : real) : int
remarks

Function returns the sign of expression as an integer -1 or +1.

example

% real absolute value
function rabs(arg : real) : real
 return sign(arg) * arg
end function
see also

ceil
floor
round
Using subprograms

sin standard function

usage

sin(expression : real) : real
remarks

Function returns the sine of expression. The value of expression is
assumed to be in units of radians.

example

% cosecant
function csc(x : real) : real
 var s : real
 s := sin(x)

 if s ~= 0.0 then
 x := 1 / s
 end if
 return x
end function
see also

cos
tan
Using subprograms

sinh standard function

usage

sinh(expression : real) : real
remarks

Function returns the hyperbolic sine of expression. The value of
expression is assumed to be in units of radians.

example

% hyperbolic cosecant
function cosech(x : real) : real
 var s : real
 s := sinh(x)

 if s ~= 0.0 then
 x := 1 / s
 end if
 return x
end function
see also

cosh
tanh
Using subprograms

sqrt standard function

usage

sqrt(expression : real) : real
remarks

Function returns the square root of expression. The value of
expression must be non-negative or a run-time error will occur.

example

% roots of a*x^2 + b*x + c = 0
function roots(a, b, c : real,
 var x1, x2 : real) : int
 var r, s : real
 s := b^2 - 4 * a * c
 if s < 0.0 then
 return 0
 end if
 r := sqrt(s)
 x1 := (-b + r) / (2 * a)
 x2 := (-b - r) / (2 * a)

 return 1
end function
see also

Using subprograms

string keyword
usage

string
remarks

Standard type specifier for strings which are sequences of
characters terminated by a null character.

see also

limits
Working with data

strint standard function

usage

strint(expression : string) : int
remarks

Function returns the integer equivalent to expression.

example

function get_number : int
 var s : string
 prompt "enter an integer:"
 get s
 return strint(s)
end function
see also

strreal
Using subprograms

strreal standard function

usage

strreal(expression : string) : real
remarks

Function returns the real number equivalent of expression.

example

procedure put_money(d : string)
 var m : real
 m := strreal(d)
 put "$", m
end procedure
see also

strint
Using subprograms

tan standard function

usage

tan(expression : real) : real
remarks

Function returns the tangent of expression. The value of expression
is assumed to be in units of radians.

example

% tan of 2*arg
function tan_2(arg : real) : real
 var s, r : real
 s := tan(arg)
 r := 2 * s / (1 - s * s)

 return r
end function
see also

sin
cos
Using subprograms

tanh standard function

usage

tanh(expression : real) : real
remarks

Function returns the hyperbolic tangent of expression. The value
of expression is assumed to be in units of radians.

example

% tanh of 2*arg
function tanh_2(arg : real) : real
 var s, r : real
 s := tanh(arg)
 r := 2 * s / (1 + s * s)

 return r
end function
see also

cosh
sinh
Using subprograms

then keyword
usage

if boolean expression then
see also

if
Looping and jumping

true keyword
usage

name := true
remarks

Boolean constant; opposite of false.
see also

Working with data

type keyword
usage

type name : type specification

remarks

Declares a named type for the type specification. Frequently, the type
specification is one a user defines using an array, record, union, or
enum declaration.
see also

Working with data

value keyword
usage

 value constant{, constant} :
 declarations and statements

remarks

This keyword marks a block of declarations and statements to jump to in a
case statement.

see also

case
Looping and jumping

var keyword
usage

var name{, name} : type specification [:= expression]

remarks

Keyword must precede each variable declaration and is also used
to declare that a parameter in a subprogram's parameter list is
passed by reference.

see also

const
function
procedure
Working with data
Using subprograms

watch standard procedure

usage

watch(expression)

remarks

Displays the current value of expression on the debug screen when
in debug mode.

see also

Getting started
Using subprograms
break

when keyword
usage

exit when boolean expression
continue when boolean expression

remarks

Keyword is used to set a conditional jump in a for or loop
statement.

see also

for
loop
Looping and jumping

xor keyword
usage

boolean expression xor boolean expression

remarks

Operator returns a boolean value:

x y x xor y
false false false
false true true
true false true
true true false
see also

Working with data

special symbols

These are special symbols used in the T programming language:

:= + - * / ^ & : ,

. ... = ~= < <= > >=

() [] \ % " '

see also

Working with data
Looping and jumping

Edit menu commands

Undo
Keyboard command: Alt+E U
Hot keys: Ctrl+Z, Alt+Backspace
Restores a text line to its state prior to any editing of it. If restoration is not possible, Undo
appears dimmed on the Edit menu.

Cut
Keyboard command: Alt+E T
Hot keys: Ctrl+X, Shift+Delete
Deletes text from a document and places it onto the Clipboard, replacing the previous Clipboard
contents.

Copy
Keyboard command: Alt+E C
Hot keys: Ctrl+C, Ctrl+Insert
Copies text from a document onto the Clipboard, leaving the original intact and replacing the
previous Clipboard contents.

Paste
Keyboard command: Alt+E P
Hot keys: Ctrl+V, Shift+Insert
Pastes a copy of the Clipboard contents at the insertion point or replaces selected text in a
document.

Delete
Keyboard command: Alt+E L
Hot key: Ctrl+Delete
Deletes selected text from a document, but does not place the text onto the Clipboard. This
operation cannot be undone.

Select All
Keyboard command: Alt+E S
Selects all the text in a document at once. You can copy the selected text onto the Clipboard,
delete it, or perform other editing actions.

Auto Indent
Keyboard command: Alt+E A
Toggles the automatic indenting feature. When checked, the text entry point for a new line will
be immediately below the first character on the line above.

